skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bleiholder, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tandem ion mobility spectrometry reveals that glycosylation does not alter the conformational heterogeneity of a monoclonal antibody. 
    more » « less
  2. A combination of ion mobility/mass spectrometry, solution and gas phase crosslinking reactions, and solution and gas phase molecular modeling was used to determine solution and gas phase conformational preferences of the model IDP alpha synuclein. 
    more » « less
  3. Cellular processes are usually carried out collectively by the entirety of all proteins present in a biological cell, i.e., the proteome. Mass spectrometry-based methods have proven particularly successful in identifying and quantifying the constituent proteins of proteomes, including different molecular forms of a protein. Nevertheless, protein sequences alone do not reveal the function or dysfunction of the identified proteins. A straightforward way to assign function or dysfunction to proteins is characterization of their structures and dynamics. However, a method capable to characterize detailed structures of proteins and protein complexes in a large-scale, systematic manner within the context of cellular processes does not yet exist. Here, we discuss the potential of tandem -ion mobility/mass spectrometry (tandem-IM/MS) methods to provide such ability. We highlight the capability of these methods using two case studies on the protein systems ubiquitin and avidin using the tandem-TIMS/MS technology developed in our laboratory and discuss these results in the context of other developments in the broader field of tandem-IM/MS. 
    more » « less
  4. This review focuses on the instrumental development and potential applications of Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (tTIMS/MS) for protein structure elucidation. 
    more » « less